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In [2] a system of equations for the distribution functions of the first approximation in a Partially ionized two- 
temperature plasma in the presence of a magnet ic  field was derived using the Chapman-Enskog method I l l  In this 
article,  the part of the distribution function Of the first approximation associated with viscosity is found. An expression 
is obtained for the viscosity tensor for an arbitrarily directed magnet ic  field. 

1. We shall denote the equations of [2] by an asterisk C). Factoring out the term with the independent parameter  
from Eq. (3. 3)*, whose solution was sought in the form <3.6)*, we obtain 

m .  . - ' Ocoi _ 

~" k T ~  ( v ~ i v ~ k  " i 

e~ O [ Oc0t ~ ( Oc0i ~ (1. 1) 

Here /c, ~ i s  the Maxwell distribution function for particles of type a , ' e  i ,  met, T~t are the charge, mass, and t em-  
perature of particles of type a. The subscript a = 1, 2, 3, respect ively,  for singly-charged ions, electrons, and neutral 
particles; B i is the magnet ic  induction, Sik / a permutation tensor, c the speed of light, v a i  the ve loc i ty  of a particle 
of type c~, c0i the mean  mass velocity,  and Gai  k is the part of the distribution function associated with viscosity. It is 
assumed that T i =  T s = T  ~ T  z. 

The integrals I a are given by (3. 4)*. I t  is shown in [1] that owing to the structure of Eq. (1, 1) the tensor Gut k 
must be symmetr ic  and without divergence, i. e . ,  

G=i ~ ---- G=~, G~i t = 0 .  (1, 2) 

From the polar vector v i and the axial  vector B i we can construct five true tensom whose symmetr ic  divergence- 
less parts will be l inearly independent [3, 4]. 

We shall choose 

T a l i k  := v,,ival: - -  1/3va~6~l~, T = ~  --- B i B k B s B  t (uasl'et - -  a/sva26st ) , 

Y a a i k  -~- B i B  s (vakv, ,  s - -  1/av,,26ks), T a4i k ~-- B te i s  t ( vakv~s  - -  */ava~)ks)., 

T, ,si l t  ~ ek . s tBiBtBn (Vasv an ~ x/a v ~28sn) , 

as the independent tensors and introduce the notation 

{Tik) ~- Vz (Tik q- Tki "-S 9/3 TiJ6ik) ' 

We shall seek a solution of system (i. i) in the form 

(I. 8) 

(I. 4) 

5, 

a~ k = ~] G~ {T~yik}. (i. 5) 
Y=I 

It is assumed that Ga}, are functions of  the scalars v2a and B z. Substituting (1.5) into (1; 1) and carrying out trans- 
formations using the rules of tensor algebra [5], we obtain 

Y=I 

(i. 6) 
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We factor out from (I. 6) the coefficients of the following independent parameters: 

t O%.q n n n n f 0%~] ~ 0%, / -#+-f++J' i t' . . , n ,  t o+,, j ,  (1. 7) 

and introduce the variables . 

Then, 

~1~ = Get + iBG=v ~'a = Ga~ + iBG:5. (1.8) 

going over to the dimensionless velocity ue ~ ~ (me/2kTe)V 've i ,  we obtain the systems of equations: 

2%B kTa kT a 
/ s  t m~Y'm~j ~ r , [  s rn~t  ~ rr a 

- -  ] :~ ~ 3Ge4 {usiuea} - -  i]e ~ ~ ~e {usluelr T I~ t  (X e {12"e~,Ue~s , (I. i0) 

~a 
- - Is  ~ me-- T Ge~-~%~u= ~} = ! s tGe~ {a:i"e~D. (1.11) 

Systems (1. 9)-(1.11) must be solved successively. However, from (1.6) it is easy to obtain the equation 

The quantity 6 ~  + ~/~B~-G.s ~/aB*G~ satisfies the same equation obtained for Ga~ when B = O. 

(G~tl) B=O = Gal. + ~/sB~Ga~ ' + ~/:~B*Oe~ �9 

Thus, we may  use (1. 12) to find Cs~ instead ~f the soLutior, ~o (I. i1). Following [11, we will seek q ~  
form of a series expamion in Sonine polynomials S~) (~), defined as [1]: 

co 

- -  x s  Z z(10} (x) s p (1. 13) (t -- s) -'/~ exp I -- T : ~'~/' 

Consequently, 

(1. 12) 

in the 

oo 

f S~ ) (x) S ~  ) (x) e-X,%dz F (71,~ + p )  
_p! ~Pq �9 

o 

(1. 14) 

We have 

oo 
a ~  = ~ - s (:~ (uJ) (1. 15) 

~ayp ~h 
p=O 

For ~r = gCtlp + tBg~gp, we obtain the infinite system of linear algebraic equations 
oo 

_ _  t t l  5 kT~ 8 r (p +. '&) kT ~]  b~,~,~, + 
E -  ne~ov = ir m'---~ n~ 3 l/-d P! %v + ,n~ ~=o 

oo ~ (L 16) 
%B~ 

=~ , kT  %3 ba3v t 2 , 3 ; p > ~ O ;  o ) = ~ ]  + kT..._~z 2 b y  r. q,r -ff ,n," r~=O v r 8~ rn~ v~O 

by substituting the expansion (1. 15) into (1, 9), multiplying the obtained expression by S(~, ~ (u~)  {uedte~ } , integrating 

with respect to d % i ,  aud using the f~ct ~hat the Souine po!y~omiaSs (i. !4) am orthogonaL 

e~ The values of bvq are determined in the following manner: 

~e \ + o~o.dpl ( .~ )  {ue~ue~} fc<ql (ueD . " - -  S (r ---- {usi sk~•  % (u=) bpq .~ I~t I ~t/z oatlt 

,9~r tu '~ I , ,  / u "  ~ S  (~) ,z , , - -  A x e t t%~ ekx ,/, ( u ) { u  iu/~}]gssbdbdedcid%i-4- 

I r+ o~ oe(~) 
+ ~] At, ) {~2} {%~e~} ,,e ,~ ~,/, (u2) {%iuek} 

- -  ~ ~13 ~'*/~ (us'z) ~u=i ctk ~1 gef~bdbde dc~id%i , 

(i. 17) 
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P 
�9 a l i ~ o ( ~ ) l u  ~% u o ,~ (q) bw - -  "V,- ~ ."-' {%~ a,',} [ &  l~ :S,/, (a~) {~.~,.%~} 

--/a*'/~~ } (u~'~){u~i'u~k'}l ga~bdbdexlr (a, ~ =  t, 2, 3; = =/= ~), 

Similarly, for the coefficients ~a~ ----- ga3p "~- iBgas~, we obtain f rom (1.10) and (1. 15) 

(~. ~7) 
(cont'd) 

4 r (p + ~/a) ea 4 I' ( p +  7[~) 

- = 3 , ,  + 

ma Too m~T~ oo co 
4- ~ ~j  el i,a,,. ._t_ maT '~ l,~s." >i 0). 

r----0 r-----0 , m~---~ r----~ (~ -= t .  2, 3, 

(1. 18) 

For the coefficients g ~ ,  we obtain from (1.12) 

2/3B~g~t2r ~" (gelr) B=0 - -  2/3B2ga3r -- gelr .. 

Systems (1. 16) and (1.18) are solved successively using the Cramer rule. 

2. By definition [1], the viscous stress tensor is 

(].. zg) 

z ~ i k  = rI=tk - -  P~6~k - (2 .  t )  

Making use of the definition of Ilai~ and Pa  in (1. 9)* and (3. 1)% we obtain 

z~ilr ~ nama <v~ival~ 1/3v~t~6ik)" (2. 2) 

Only the term with Ga~ k makes a contribution to the viscous stress tensor z~i ~ [1]. Using the definitions (2.2) 
and (1.9)*, the expansions (3. 6)* and (1. 15), the fact that the Sonine polynomials in (1. 14) are orthogonal, and the 
relationship 

! ~ ( ~) { ~ivl~} { v ~vq} dci : -~.( ~p 6~ + 6iq 6k~-- + 6i~ f ~t) f'~ (~) t~dc, , (2.3) 

which is easily verifiable for the isotropic function ~o (v), we obtain 

~ OCoa ~ (kTa)' 

B t t 
+ ga~o ( ,Bk -- "~- 8,1tB~) BvBq + -2- gaso ( B,B ,Skq + BItB v~,a-- 

~--3- 8tlcB pB q "-]- - '2 ga40 (~pitBt6 qk AveplttBt6 r -~ --2" gctsO (eqitBpBtBk q- 6qktB vBtBi) ; 

(2, 4) 

3 ~  

form 

The quantity Pdikpq is the viscosity tensor for a - t y p e  particles in a magnet ic  field. A general expression for the 
viscosity tensor for an arbitrarily directed magnet ic  field was obtained by taking the system of independent tensors in 
the form (1. 3). In [6] a general expression was not obtained for the viscosity tensor, another system of independent 
tensors being chosen. To find the viscosity tensor, it is necessary to know only the first coefficient in (1.15).  

We leave a single �9 Sonine polynomial  in expansions (1.15). The quantities bo~, given by (1.17), have the 

b =37 + =), 1 15 

b ~ z -  f ' -~3  Jr 3 ) - ~ -  -t- - - n a ( t  - - a ) n a  Ys 

) 

n ( i  L-,a)' yt  
x~ s. m x~ 

Y2 
n a  (t  ~ a ) _  

Tin 

m: na (i -- a) 

(3. i) 

if  we ignore quantities ,-., (m~ / m) % in comparison with unity. 

To compute  (8. 1) conditions (5. 7)* were used. The quantities r a and r a 1~ are given by (5. 2)*. The structure of 
systems (1.16) and (1. 18) is such that, if  we neglect  quantities ,~ (ra~ / m) 1/' in comparison with unity, we do not need 

65 



to know the elements b~0~ and b2~0 exactly, since due to their smallness they do not appear in the final results. For 
Maxwellian interaction between neutral and charged particles, we have 

y~ = 8.32, y~ = 1.06, ya = 10.3. (3. 2) 

For any interaction, we have the relations [1]: 

Yl _ ~ + [  3 ~is(2)2)] nq~i 3 5~X3 (1) (i) 27 ~ ( Y3 

~ _ [  3 ~13(2) ] nT2a 
Y-~ = 5 ~ 3  ~ ) - - 5 -  ' (2) n'~la 

_ 8 ~ . s  (~) (2)  ( 3 .  3 )  

Here Q~s (0 (p) are given by (5. 9) *. The temperature ratio for electrons and heavy particles is always linearly 
dependent on the mass ratio and, b~ing much smaller than the ratio of the masses of the heavy particles and electrons, 
does not affect the order of the elements b0=0 ~ and b~ Ca t, 3). The limitation on the temperature ratio follows 
from the conditions of applicability of the Boltzmann equations [7]. The solution of system (1. 16), tak!ng into account 
(3.1), has the form 

5 m 
g i l a -  6 kT 

25 
gm -~ - -  t8 

5 m 
ga~o~ 2 kT 

25 m 
gaao-- 6 kT 

5 

gaxo = 3(2 27 

50 m~ _ _  
guo- -  9 (2 27 ~'2)~ kT~ 

t ~- y2 (t - -  Ct) (2:~ / "~la 2[_ yltXT3) 

m o l ~  i + y~ (t -- a) (x3/~ls + y~axs) 
kT xt B rd 27 2'~/~o~3x~ 

F~F~ 27 (~/~) oh~x~ 2 
�9 3 [rd 27 ~~ /~ ,~ ]  [t + y~a (~3 / x~s)|' 

.m~xz t + [2y:, (t - - a )  x~/3(2 + )f2) "~,s] 

(3.4) 

where 

r l  = '1 27  Ys'~I ( | '  - -  Ct) y~'~l '~act  (1 - -  Ct) .~_ Yl'Q (1 - -  Ct) y~'~lCt 
3"qa ~l~ ~ [t 27 yia (%/x~3)] ' F~ : i 3xi~ @ 3x s (3.5) 

Using (3.1) and (3. 4), we obtain the solution of system (1.18) in the form 

25 
g~3o = - C  

25 
gas0 = 6 - -  

25 
g ~ 0 =  T~ 

g~o = 3 (1 

g~5o - -  6 ( t  

ol~xi z gll0 25 oi2xx ~ gl40 
B ~ I, d + zs/3sod~lz ' , g150 ~ 12 B 2 F d + zb/a~odxxz-' 

O12Tt 2 ,y~ (i - -  C 0' ('~3 ] "~I~ ~- Yl{X'~a) gllO 
B z F12 + 2~/360)1")'~12 

O3Tj~ y~ (t -- a) (T s / "qs + Yl(ITS) glr 
B 2 
25 (~2~% 2 

25 r 

+ V~)~ B~ 

r l  2 -3[- 25/36(012't'12 
{[ 2ys (t -- a) x2 Y "+ 25 } - 1  

- -  g~lo t + 3 (2 + ff~.) ~ 9 ~z + r , o ~ d  . 

(a. 6) 

The coefficients g~2o are found from (1. 19): 

3 i a 
ga~o -- 2B 4 (galo)B=o-- -~- gaso--  ~ galo- (3.7) 

From (3. 4)-(3. 7) with a = 1 and a magnetic  field directed along the x-axis, for the ion stress tensor ~lik '  We 

obtain the relations of [1] with the corrections made in [6]. For a = O, we obtain the first-approximation formula 
for the viscosity coefficient of a simple gas [1] 

5 g k ~  l (3.8) 
~" = ~ - ] / ~  o" a r 
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from the expression for gin0 taking into account (5. 2)* and (2. 5). 

For an elastic ball model Q{I,I}I~ == i .  
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